Trimeric ring-like structure of ArsA ATPase.

نویسندگان

  • H W Wang
  • Y J Lu
  • L J Li
  • S Liu
  • D N Wang
  • S Sui
چکیده

ArsA protein is the soluble subunit of the Ars anion pump in the Escherichia coli membrane which extrudes arsenite or antimonite from the cytoplasm. The molecular weight of the subunit is 63 kDa. In the cell it hydrolyzes ATP, and the energy released is used by the membrane-bound subunit ArsB to transport the substrates across the membrane. We have obtained two-dimensional crystals of ArsA in the presence of arsenite on negatively-charged lipid monolayer composed of DMPS and DOPC. These crystals have been studied using electron microscopy of negatively-stained specimens followed by image processing. The projection map obtained at 2.4 nm resolution reveals a ring-like structure with threefold symmetry. Many molecular assemblies with the same ring-shape and dimensions were also seen dispersed on electron microscopy grids, prepared directly from purified ArsA protein solution. Size-exclusion chromatography of the protein sample with arsenite present revealed that the majority of the protein particles in solution have a molecular weight of about 180 kDa. Based on these experiments, we conclude that in solution the ArsA ATPase with substrate bound is mainly in a trimeric form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump.

The ArsA ATPase is the catalytic subunit of the pump protein, coupling the hydrolysis of ATP to the movement of arsenicals and antimonials through the membrane-spanning ArsB protein. Previously, we have shown the binding and hydrolysis of MgATP to ArsA to be a multi-step process in which the rate-limiting step is an isomerization between different conformational forms of ArsA. This isomerizatio...

متن کامل

Structure-function relationships in an anion-translocating ATPase.

The ArsAB ATPase is an efflux pump located in the inner membrane of Escherichia coli. This transport ATPase confers resistance to arsenite and antimonite by their extrusion from the cells. The pump is composed of two subunits, the catalytic ArsA subunit and the membrane subunit ArsB. The complex is similar in many ways to ATP-binding cassette ('ABC') transporters, which typically have two group...

متن کامل

Construction of a chimeric ArsA-ArsB protein for overexpression of the oxyanion-translocating ATPase.

Resistance to toxic oxyanions of arsenic and antimony in Escherichia coli is conferred by the conjugative R-factor R773, which encodes an ATP-driven anion extrusion pump. The ars operon is composed of three structural genes, arsA, arsB, and arsC. Although transcribed as a single unit, the three genes are differentially expressed as a result of translational differences, such that the ArsA and A...

متن کامل

Functional Promiscuity of Homologues of the Bacterial ArsA ATPases

The ArsA ATPase of E. coli plays an essential role in arsenic detoxification. Published evidence implicates ArsA in the energization of As(III) efflux via the formation of an oxyanion-translocating complex with ArsB. In addition, eukaryotic ArsA homologues have several recognized functions unrelated to arsenic resistance. By aligning ArsA homologues, constructing phylogenetic trees, examining A...

متن کامل

Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase.

The ArsA protein, the catalytic component of the plasmid-encoded resistance system for removal of the toxic oxyanions arsenite, antimonite, and arsenate from bacterial cells, catalyzes oxyanion-stimulated ATP hydrolysis. Three lines of evidence suggest that the ArsA protein functions as a homodimer. First, the ArsA protein was modified with 5'-p-fluorosulfonyl-benzoyladenosine (FSBA). Antimonit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 469 1  شماره 

صفحات  -

تاریخ انتشار 2000